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 Depends on plate
tectonics through
geologic history

e Big environmental
changes through
geologic time

e Seas In, seas out

 Warm periods and
Ice ages




Colorado Plateau Province
Vv canyons
Vv horizontal sediments
Vv broad warping

Transition or Central
Highlands Province

vV lots of faulting
Vv mostly mountains
Vv rugged terrain (high relief)

Basin & Range Province
v fault block mountains

Vv broad alluvial valleys

Vv sand, clay, salt & gravel -
fill up to 10,000 feet thick




Sea floor
spreading and
mid-ocean
ridge
volcanism
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Mountaln bUIIdlng eplsode in yoahger PreCambrlan (older Proterozoic)
e 1.7 billion years - Mazatzal Orogeny produced Rocky Mt.-style mountains
e Metamorphism, folding, later intrusion of granitic rocks




Unconformities in the Grand Canyon

Kaibab Plateau
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v 1.1 billion years ago - Fault block mountains (4,0
v about 10,000 ft thick

v Eroded away to a nearly flat surface before the deposition of the Tapeats
Sandstone 500 million years ago.




Photosynthesis by blue green algae
(cyanobacteria) since 3.5 billion yrs ago

When pigments developed in cells,
they could absorb and process light.

The products of this process were
energy and oxygen.

Between 2.4 — 2.2 billion years ago,
the greater numbers of cyanobacteria
increased production of oxygen.

By 1.8-1.6 Ga, O, rose from 1% to
15%.

Stromatolites deposited layers of
calcium carbonate in layers.
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Unconformities in the Grand Canyon

Kaibab Plateau
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UPPER CAMBRIAMN

MIDDLE CAMBRIAMN

Figure 13-2 Typical Cambrian trilobites. A. Olenellus.
B. Holmia. C. Lejopysge. D. Paradoxides. E. Glyptagnostus.

F. Illaenurus. Trilobites were arthropods (invertebrate animals
with segmented bodies and jointed legs). The soft body and the
many legs were positioned beneath the flexible, jointed
skeleton. Trilobites had mouthparts for chewing small pieces of
food. Most species crawled over the seafloor, but some
burrowed in sediment, and a few small species, including
Lejopyse and Glyptagnostus, were planktonic. (Scale bars
represent | centimeter l; inchl.) (After R. C. Moore, ed., Treatise
on Invertebrate Paleontology, pt. O, Geological Society of America
and University of Kansas Press, Lawrence, 1959.)
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UPPER ORDOVICIAN S e I !

SEDIMENTARY FACIES e = =y |
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!::iguri: 11.15 Upper Crdovician sediment pasterns far North America ¥Widely scartered pacches of sediments on the Canadian Shield
prove the great extent of the Lace Owdovician sea Absence of Ordovician strata on several arches proves subsequent warping and ercsion of

these arches. Moee the spread of red beds and marine shales westward from the Appalachian region, forming a chasne wedge. (See Box 0.2 for
symbols and sources.)




Middie Ordovician (~ 470 Ma)




Figure 13-11
Ordovician inverrehrare
fossils, A A strarght-shelled
niantilodd about 15
centimeters {6 inches) bong
B. A spuny trilobite that lived
om the sediment surface

€. A smoath-shel |ed
hurroweng trilobite.

1 A snadl lpagtropod). £ and
I Two kinds of articulame
brachiopods, 6. A bivalve
el Dk ARt lived an the
sediment surface.

H. & branched bryozoan
colony. [. A tabulare coral
codnny. [. A SIEomatomoro
colony. K. A rugose ooral
[Courtesy Smithsomian
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FIGURE 9-4 Paleography of North America during the Devonian Period.
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FIBURE 10-62 The gigantic armored skull and
thoracic shield of the formidable late Devonian
placederm fish known as Danbleostens, Dunbileortens
was over 10 meters {about 30 feet) long, The skull shown
here is about 1 meter tall. It is equipped with large bony
curting places that functioned as teeth, Each eye socker
was proteceed by a ring of four plates, amd a special joint
at r;ﬁl_" rear r'||' i I:Il; _l:L'I,III F\!'rll'lll.'h.lll. 1|||' I'II:::I.II [£5] IH. f:ll:".'.'\.l.

therehy making an extra I'”ll"' hite |_..l|mhih|:. Dunkleastens
ruled the seas 350 million vears ago. (Cosrtesy of the LS.
Natinal Museson of Natural History, Smatbonian

Institnizion; photagraph by Chip Clavik.)

FIGURE 10-60 Early Paleozoic
ostracoderms. (A} Thefodus, (B}
Pteraspis, (C) Famtoytits, and (£}
Hemicyclaspis, drawn to the same scale.

FIGURE 10-61 The Early Devonian acanthodian fish FIGURE 1063 The Devonian antiarch fish Pterichthyodes.
Climatius. (After Romer, A. S. 1945, Vertebrate (From Romer, A. §. 1945, Vertebrate Paleontology. Chicage:
Paleontology, Chicage: University of Chicago Press.) University of Chicago Press, p. 54, fig. 38.)



Figurr: I2.I1  Artist’s conception of the Late Devonian landscape. Tall seed fern and lycopsid trees are conspicuous, but most plants were
low-growing psilophytes, lycopsids, sphenopsids, and ferns that clustered close to the water's edge. Against this backdrop, early land arthropods
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Unconformities in the Grand Canyon

Kaibab Plateau
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Crinoids
(echinoids related to starfish,
but called sea lilies)




Abundant dinosaurs

;f-—-" and ammonites

First dinosaurs
First mammals
Abundant cycads
Sonoma Massive extinctions ——
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FIGURE 10-76 The skeletc

FIGURE 10-7T7  Cacops, a small labyrinthodontic
amphibian from the Lower Permian. (P

spectmeen on
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FIGURE 10-88 Calewrites, o sphenopsid. Plane shown
are aboue 3 o § meters tall,

Extincrion evertonk many plant gronps near the end
of the Permian Period, Many species of byeopsids, seed
ferns, and conifers disappeared. Small ferns that grow
in |,|;_=||11|:| areas, however, were not F:-|t|1|:-|_|5||_|'|j' affected
by the crisis.

FIGURE 10-E9

Anundaria, an abundant sphcnl.rpsid of
Pennsylvinia age.

Mass Exrinetions 4 375

FIGURE 10-90  Propreris, p true fern from the
Penmsylvanian of Wingds (the penoy is for soale).

Flolalo[E[e F[I=1=]=10

Frag)

FIGURE 10-91 End of a branch of Cordeites, showing
the straplike leaves of these trees, Not uncommonly, the
leuves attained |'='I'l|_:l|'l$ af | merer, The clusered bodies

pat the plant's nale gametes. (Adapred fram

Corangd Ty, O F877. Flore € ..'J'J-'nr.J v dp .':I-.'wl romrenrr ofy o
Laire et du cemtre de be Frence, Mem. Acad. Sci, Tistit
France, 24:624 g

MASS EXTINCTIONS

For most of the Paleoraic, the Farth was |:||:;|'||.||a|.r_|.l by
a rich diversity of life, There were, however, times
when the planct was less |'|l.:-1-[:l|u||]|_. andl large groups
af 'i.ll.'l.'.,"ﬂ.l.'li.‘i!ll:t suffered extinetion [|"1r'_.r 1052, ]_-f:]rl:_
geologists saw evidence of these mass extincrinns in the
fiossil record and used the abropt erminaton of fossil
rmnges o define the boundaries between geologic




FIGURE 9-12  Part of an Illinois cyclothem. The
lowermost layer is the coal seam (cyclothem bed 5),
followed upward by shale (bed 6) near the geologist’s hand,
limestone (bed 7), shale (bed 8), another limestone (bed 9),
and the upper shale (bed 10). Part of another sequence caps
the exposure. This cyclothem is part of the Carbondale
Formation. (Phorgraph courtes

of 1) 1. Reimertsen and the
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FIGURE 8-11 An ideal coal-bearing cyclothem,
showing the typical sequence of layers. Many
cyclothems do not contain all 10 units, as in this illustration
of an idealized sequence. Some units may not have been
deposited because changes from marine to nonmarine
conditions may have been abrupt and/or units may have
been removed by erosion following marine regressions.
The number 8 bed usually represents maximum inundation
and, correlated with the same bed elsewhere, provides an
imnortant correlative stratioranhic harizan M I coaeme
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FIGURE 8-18 Generalized paleogeographic map for the Permian Period.
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Unconformities in the Grand Canyon

Kaibab Plateau
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FIGURE 10-78 Permian reptiles. The prominent
sailback reptile in the left foreground, with a larger skull
and daggerlike reeth, is the carnivore Dimetradon. The
sailbacks with smaller heads and blunt cheek teeth, in the
foreground at right and i in the d1atmce, are plant-eaters of
the genus Edapbosaurus. (Copyright T. Sibbick.) M Is it likel

FIGURE 10-80 Mammal-like reptiles.
The scene df‘:;}icl.s three carnivorous forms
(Cynognathus) about to attack a plant-cating
Tj'!EI‘:.l"]iiilJ reptile [:K}'m?}r:‘#ﬁ‘_}-'e?‘.r'df:l. (Conrtesy of




FIGURE 11-1 Paleogeographic reconstruction of the world about 180 million years
ago, when the break-up of Pangea was beginning. (After Scotese, C. R. and McKerrow,
W. 5. 1990, Paleogeography and Biogeography, Geol. Soc. London Mem. 12:1-21.)
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FIGURE 11

3 Generalized paleogeographic map for the Triassic of North America.

Bl What s the caise of the fanlting almg the pastern margin af the continent?













FIGURE 12-21 The small, agile
theopod Coelophysis lived about
220 million years ago, during
the Late T'riassic. Coelophysis was
about 3 meters in length. These
fast, agile, bipedal predators may
have pursued their prey in packs,
and there is evidence that they
occasionally even ate juveniles of
their own species. (Copyright

FIGURE 12-17 Rutiodon, a Triassic |||'|!.'t|:_:|5:u|1'. Like many other i:|1}—.n~.‘.|11ru_ Rutrodan grew
to lengths of 10 or more feer: (Wnstrarion by Carbn Foerron. ) B W har Nuing vepeile & an example Hesperosuchus froan the Priassic of the suutlowestern United States,
af eonrvergent evodution with Rutdodan?
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FIGURE 11-7 Generalized palcogeographic map for the Jurassic of North America.
Wl Describe the conditions at the site of your sohoal duering the Furassic Period.
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FIGURE 11-26 Paleogeographic map for the carly
Jurassic of the western United States, showing general
extent of sea and land as well as paleolatitudes. (From
Stanley, K. O., Jordan, W. M., and Dogt, K. H. 1971, Bull.
Am, Assoc, Petrol. Geol, 35(1):13.)
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Cratonic Sequences of North America*
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FIGURE 13-20 Vertical aerial photograph of a large
cinder cone in the San Francisco volcanic field of
northern Arizona. The solidified flow issuing [rom the
cone is 7 kilometers long and more than 30 meters thick.
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FIGURE 13-36 Areal
coverage of continental
glaciers in North America
during the latest glacial
advance, about 18,000
years ago. (Courtesy of
Thompsen, G.R. and Turkl, 7
1997, Modern Physical
Geology, Philadelphia:
Saunders College Publishing.)



Figure 1440 The abundance of carbon
dioxide in Earth’s atmosphere has declined
dramatically during the last 100 million
years. Loss of this important greenhouse
gas may have allowed Earth to cool enough
for glaciers to accumulate.
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Glacial and

Interglacial
o stages, last 2
200,000 million years

FABLE 13-2 Classic Nomenclature for Glacial

and Interglacial Stages of the
Pleistocene Epoch
NORTH ALPINE YEARS BEFORE
AMERICA REGION PRESENT
Q
@ 500,000 —10,000
!
@ WISCONSIN | Wiarm
"'I“" — 75,000
E Sangamon Riss-Wiirm
= —125,000
ILLINOIAN Riss
700,000 —265,000
Yarmouth Mindel-Riss
— 300,000
Figure I6.16 Late Pleistocene standard marine palea- 800,000 KANSAN Mindel
temperature curve (left) based upon oxygen-isotope analyses of —+435,000
calcium carbonate in microfossil shells from deep-sea cores of three Aftonian Giinz-Mindel
oceans. Magnetic polaricy measurements on the same cores (right) and 900,000 - — 500,000
limited isotopic dating of cores provide a time scale. Mote that, for the : i sl | = i
last 600,000 years, cald intervals had a periodicity of about 100,000 NEBRASKAN | Giinz
years; from then back to about 1.4 million years, the period was about —1,800,000
40,000 years {]—Jaramillo brief narmal polarity event). (Adapted from 1,000,000 Pre- e
Emiliani and Shackleton, 1974: Science, v. 183, pp. 51 15 1 4: and Vosrs e bragkan Fre-Ciinz
Shackleton and Opdyke, 1976: Geological Society of America Memoir

145, pp. 449—464.)
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FIGURE 13-43 Curve reflecting variations in the global volume of ice (and, indirectly,
paleotemperatures) during the past 500,000 years. Data are from radiometric dating and
1sotope measurements of cores from the Indian Ocean. (Data from Hays, 7. D., and Shackleton,
N. J. 1976. Science 194:1121-1132)
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Figure 14.38 A record of climatic
change during the last 160,000 years was
assembled from studies of ice cores from
Greenland’s glacier. It shows that the nor-
mal pattern of change involves numerous
rapid fluctuations in temperature—not
only during glacial periods, but throughout
interglacial perieds as well. The stable
warm temperature of the present inter-
glacial period is distinctly abnormal.
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Figure 20-10 Cold intervals of the past 5500 years Mountains of California. (Data from V. C. T.a Marche, in I H.
recorded by widths of annual growth rings in Lamb, Climare History and the Modern World, Routledge, London,
bristlecone pines near the upper tree line of the White 1995.)
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